Светотехника
Нашли ошибку? Сообщите нам ...Комментировать: Светодиодные лампы аварийного освещенияРаспечатать: Светодиодные лампы аварийного освещения

Светодиодные лампы аварийного освещения



При пропадании сетевого напряжения в подсобных или служебных помещениях желательно поддерживать хотя бы минимальный уровень освещённости, чтобы принять какие-то меры по устранению неисправности или покинуть помещение. В таком случае помогут лампы, способные светить некоторое время после отключения сетевого напряжения. Для них потребуется автономный источник питания или накопитель энергии, например, конденсатор большой ёмкости или аккумулятор. В качестве ламп аварийного освещения целесообразно использовать светодиодные, поскольку они самые экономичные.

Для того чтобы лампа могла светить и после пропадания напряжения в сети, она, конечно, должна содержать встроенный источник энергии. В простейшем случае им может быть оксидный конденсатор относительно большой ёмкости, способный накопить в дежурном режиме энергию, достаточную для поддержания небольшой освещённости помещения в течение нескольких десятков секунд.

Рис. 1

Схема такой лампы аварийного освещения показана на рис. 1. Её можно изготовить на основе серийно выпускаемой светодиодной лампы либо сделать самостоятельно на базе элементов светодиодного карманного фонаря или отдельных светодиодов (см. статью "Сетевая лампа из светодиодов фонаря" в "Радио", 2013, № 2, с. 26). В дежурном режиме соединённые последовательно светодиоды питаются от источника, состоящего из балластного конденсатора С1, диодного моста VD1-VD4 и сглаживающего конденсатора С2. Конденсатор СЗ - накопительный, сразу после подачи напряжения сети он заряжается от мостового выпрямителя через диод VD6, а когда светодиоды начнут светить, - через резистор R3 от однополу-периодного выпрямителя на диоде VD5. На транзисторах VT1, VT2 собран стабилизатор тока, обеспечивающий равномерную разрядку конденсатора СЗ и поддержание постоянной яркости свечения светодиодов в аварийном режиме.

В дежурном режиме ток через свето-диоды зависит в основном от ёмкости конденсатора С1, тока стабилизатора (в данном случае - около 1 мА) и числа светодиодов N (например, при N = 21 и ёмкости конденсатора, указанной на схеме, этот ток - около 20 мА). Резистор R2 ограничивает бросок зарядного тока при включении лампы, а через резистор R1 разряжается конденсатор С1 при её отключении. В аварийной ситуации, когда сетевое напряжение пропадает, светодиоды питаются от накопительного конденсатора СЗ через стабилизатор тока. Неизменное минимальное освещение поддерживается около 20 с, после чего яркость светодиодов плавно уменьшается в течение примерно 30 с. Увеличить продолжительность аварийного освещения можно увеличением ёмкости конденсатора СЗ.

Рис. 2

Все детали, кроме светодиодов, монтируют на печатной плате, чертёж которой показан на рис. 2. Резисторы - С2-33, Р1-4, конденсаторы С2, СЗ - оксидные импортные, С1 - от вышедшей из строя энергосберегающей компактной люминесцентной лампы (КЛЛ) или импортные, рассчитанные на работу при переменном напряжении 250...400 В. Из неё же извлечены и диоды 1N4007. Биполярный транзистор - любой из серий КТ315, КТ3012. Смонтированную плату помещают в пластмассовый корпус от КЛЛ деталями в сторону цоколя.

Небольшая ёмкость накопительного конденсатора СЗ не позволяет обеспечить продолжительное свечение лампы в аварийном режиме. Увеличение его ёмкости ведёт к существенному увеличению габаритов. Выходом из этой ситуации может быть применение ионистора - конденсатора большой ёмкости (до нескольких фарад). Однако номинальное напряжение ионистора, как правило, не превышает 5 В, поэтому от него можно питать один свето-диод или несколько включённых параллельно.

Рис. 3



Схема такой лампы показана на рис. 3. В дежурном режиме светодиоды питаются от выпрямителя на диодах VD1-VD4, подключённого к сети через балластный конденсатор С1. При этом через соединённые последовательно светодиоды EL1-ELN-3 протекает ток около 20 мА, а через каждый из включённых параллельно ELN-2-ELN - втрое меньший. Для выравнивания тока через них служат токоограничивающие резисторы R3-R5, которые при налаживании подбирают так, чтобы суммарное падение напряжения на них и све-тодиодах ELN-2-ELN не выходило за пределы 4,5...5 В. До этого напряжения и заряжается ионистор СЗ. В первое время после включения лампы в сеть (пока он не зарядится до напряжения 3...3.3 В) светодиоды ELN-2-ELN не светят.

При пропадании сетевого напряжения ионистор начинает разряжаться через эти светодиоды и в лампе светят только они. Продолжительность свечения зависит от ёмкости ионистора и числа подключённых к нему светодиодов. Увеличение их числа требует пропорционального увеличения сопротивления включённых последовательно с ними резисторов, и поскольку ток разрядки ионистора при этом возрастает, продолжительность аварийного освещения сокращается.

Существенно продлить свечение лампы в аварийном режиме можно, заменив ионистор малогабаритным Li-ion аккумулятором (или батареей из Ni-Cd аккумуляторов) от сотового телефона или радиотелефона. Подборкой резисторов R3-R5 (при отключённом аккумуляторе) устанавливают на них и включённых последовательно с ними свето-диодах ELN-2-ELN напряжение4...4,1 В при использовании Li-ion аккумулятора или 4,3...4,4 В, если применена батарея из трёх Ni-Cd или Ni-MH аккумуляторов (именно до этих значений напряжения они и заряжаются в дежурном режиме). При пропадании сетевого напряжения светодиоды ELN-2-ELN питаются от аккумулятора. Запаса его энергии хватает на несколько часов непрерывной работы. По мере разрядки его напряжение и ток через светодиоды уменьшаются, но благодаря их нелинейной вольт-амперной характеристике полной разрядки не произойдёт. Последовательно с аккумулятором можно установить выключатель SA1 для его отключения, например, при транспортировке лампы.

Для увеличения яркости ламп, собранных по схеме на рис. З, в аварийном режиме следует увеличить число параллельно соединённых светодиодов. В принципе, можно включить параллельно все светодиоды лампы, но в этом случае для обеспечения нормальной яркости в дежурном режиме придётся существенно увеличить ёмкость балластного конденсатора С1, что приведёт к нежелательному увеличению (до нескольких сотен миллиампер) потребляемого от сети тока. Кроме того, если аккумулятор разряжен, яркость свечения лампы в первое время после включения может быть низкой, так как существенная часть тока пойдёт на зарядку аккумулятора.

Рис. 4



Возможный выход из положения - последовательное соединение нескольких групп параллельно включённых светодиодов (рис. 4). Для изготовления такой лампы была применена печатная плата от фонаря с 32 свето-диодами, соединёнными параллельно. На плате они расположены так: 4 - в центре, 17 - по внешней окружности, 11 - по промежуточной. Последние выделены в группу (EL12-EL22), питаемую в аварийном режиме от аккумулятора, а остальные разделены на две группы, одна из которых содержит также 11 светодиодов (EL1-EL11), а вторая - десять (EL23-EL32). Эти группы и токоограничивающий резистор R3 включены последовательно, для чего соответствующие печатные проводники на плате перерезаны, а необходимые соединения выполнены отрезками изолированного провода.

Потребляемый этой лампой ток определяется ёмкостью балластных конденсаторов С1, С2 и равен примерно 100 мА, т. е. через каждый светодиод течёт ток около 9 мА. Конденсатор СЗ сглаживает пульсации выпрямленного напряжения, делая свечение светодиодов более ровным. В дежурном режиме на светодиодах EL12-EL22 и резисторе R3 (его подбирают при налаживании) падает напряжение около 4,1 В, до которого и заряжается Li-ion аккумулятор G1. Если применена батарея из трёх Ni-Cd или Ni-MH аккумуляторов, это напряжение следует увеличить до 4,4 В. Выключатель SA1 выполняет ту же функцию, что и в предыдущей конструкции.

Рис. 5



Все детали, кроме светодиодов и резистора R3, монтируют на печатной плате из фольгированного стеклотекстолита, изготовленной по чертежу, показанному на рис. 5. Смонтированную плату и аккумулятор размещают в корпусе диаметром 57 мм от КЛЛ мощностью 35 Вт так, чтобы конденсаторы С1 и С2, предварительно обмотанные изоляционной лентой, оказались в цокольной части. Выключатель устанавливают на его боковой стенке. Внешний вид лампы показан на рис. 6.

Рис. 6



Для того чтобы яркость свечения лампы с последовательно соединёнными светодиодами оставалась в аварийном режиме такой же, как и в дежурном, её необходимо дополнить питаемым от аккумулятора повышающим преобразователем напряжения. Схема такой лампы показана на рис. 7. В дежурном режиме светодиоды EL1-ELN питаются током 15...20 мА от узла питания, состоящего из балластного конденсатора С1, диодного моста VD1 - VD4 и сглаживающего конденсатора С2. Напряжение, до которого заряжается аккумулятор G1, устанавливают подборкой резистора R3.

Рис. 7



Преобразователь напряжения содержит микросхему DD1, транзистор VT1, повышающий импульсный трансформатор Т1 и выпрямитель на диодах VD6-VD9. На элементе DD1.1 собран генератор импульсов с частотой следования около 30 кГц, на DD1.2 - формирователь управляющих импульсов. Соединённые параллельно элементы DD1.3, DD1.4 выполняют функции инвертирующей буферной ступени. С её выхода импульсы поступают на затвор переключательного полевого транзистора VT1 . При питании от сети и замкнутых контактах выключателя SA1 аккумулятор G1 заряжается через светодиоды EL1 -ELN-1 и стабилитрон VD5. На один из входов элемента DD1.1 (вывод 5) через резистор R4 подано напряжение положительной полярности (около 4 В), а через резистор R5 - отрицательной (около 6 В) со стабилитрона VD5. В результате напряжение на этом входе имеет низкий уровень, генератор заторможен и преобразователь не работает. При пропадании сетевого напряжения на вход элемента DD1.1 поступает напряжение высокого уровня от аккумулятора G1, генератор включается и на светодиоды подаётся напряжение питания с выпрямителя на диодах VD6-VD9. Подстроечным резистором R7 можно в широких пределах изменять длительность управляющих импульсов и тем самым - яркость свечения лампы в аварийном режиме. Работоспособность преобразователя сохраняется при снижении напряжения питания до 2,8 В.

Рис. 8



Резисторы R1, R2 (МЛТ), конденсаторы С1 (К73-17 или от КЛЛ), С2 (оксидный импортный) и диоды VD1-VD4 (также от КЛЛ) размещены на двусторонней печатной плате, чертёж которой показан на рис. 8. Монтаж в основном поверхностный. Конденсатор С2 устанавливают параллельно плате и приклеивают к ней клеем "Момент". Четыре отверстия в правой части платы предназначены для прохода выводов диодов VD1-VD4 (их припаивают к печатным проводникам обеих сторон). После проверки смонтированную плату обматывают двумя слоями изоляционной ленты и помещают в цокольную часть корпуса КЛЛ.

Рис. 9



Преобразователь собран на печатной плате, изготовленной по чертежу на рис. 9. Монтаж - поверхностный. Конденсаторы С5-С7 и диоды VD6-VD9 - от КЛЛ, подстроечный резистор R7 - СПЗ-19а.

Для изготовления трансформатора Т1 использован балластный дроссель от КЛЛ мощностью 10 Вт. Надо подобрать дроссель, конструкция которого позволяет без разборки намотать дополнительную обмотку - 10 витков провода МГТФ-0,2. В трансформаторе она будет выполнять функцию первичной (I) обмотки, а вторичной (II) станет обмотка дросселя.

Li-ion аккумулятор от сотового телефона приклеен к плате на стороне, свободной от элементов. Выключатель SA1 - движковый ПД9-1 или аналогичный импортный. Внешний вид преобразователя вместе с платой светодиодов (от сетевой лампы с последовательным соединением 21 светодиода) показан на рис. 10.

Рис. 10



В заключение следует отметить, что повышающий преобразователь можно собрать и на специализированной микросхеме, это, кстати, позволит уменьшить его размеры. Лампу с преобразователем можно использовать как ручной фонарь, но в этом случае в качестве источника питания желательно применить батарею, составленную из трёх Ni-MH аккумуляторов.

Автор: И. Нечаев, г. Москва


Дата публикации: 29.04.2013
Мнения читателей

Нет комментариев. Ваш комментарий будет первый.


Вы можете оставить свой комментарий, мнение или вопрос по приведенному вышематериалу:








 



RadioRadar.net - datasheet, service manuals, схемы, электроника, компоненты, semiconductor,САПР, CAD, electronics