Охранные устройства
Нашли ошибку? Сообщите нам ...Комментировать: Охранное устройство на микроконтроллере ATtiny2313Распечатать: Охранное устройство на микроконтроллере ATtiny2313

Охранное устройство на микроконтроллере ATtiny2313



Предлагаемое устройство отображает на светодиодном индикаторе состояние семи контактных датчиков охранной сигнализации и подаёт звуковой сигнал тревоги при срабатывании любого из них, включая при этом и внешние исполнительные устройства двух разновидностей. Для увеличения числа обслуживаемых датчиков возможно каскадирование таких устройств.

Принципиальная схема основного блока охранного устройства изображена на рис. 1. Тактовая частота микроконтроллера DD1 10МГцзадана кварцевым резонатором ZQ1. Коды из прилагаемого к статье файла OXRAN.hex должны быть загружены в программную память микроконтроллера, а его конфигурация запрограммирована в соответствии с таблицей.

Таблица

Разряд

Сост.

Разряд

Сост.

DWEN

1

CKDIV8

0

EESAVE

1

CKOUT

1

SPIEN

0

SUT1

1

WDTON

1

SUT0

0

BODLEVEL2

1

CKSEL3

0

BODLEVEL1

1

CKSEL2

0

BODLEVEL0

1

CKSEL1

1

RSTDISBL

1

CKSEL0

0

0 - запрограммировано.

1 - не запрограммировано.

Принципиальная схема основного блока охранного устройства

Рис. 1. Принципиальная схема основного блока охранного устройства

К разъёму XP5 можно подключить до семи датчиков SF1-SF7, сигнализирующих о срабатывании замыканием своих разомкнутых в отсутствие тревоги контактов. Это могут быть кнопки, герконы, датчики движения, оснащённые выходными реле, и тому подобные приборы. Параллельно датчикам в описываемом устройстве подключены установленные на его плате кнопки SB1-SB7. Нажимая на них, можно проверить исправность устройства. Кнопкой SB8 и переключателем SA1 выбирают режимы работы.

К разъёму XP3 подключают одно или несколько исполнительных устройств, состояние которых после срабатывания не нужно периодически изменять. Это может быть, например, соленоид электромеханического замка или механизм блокировки дверей. Сигнал управления такими устройствами микроконтроллер DD1 формирует на выходе PD0.

Разъём XP4 предназначен для исполнительных устройств, состояние которых при тревоге должно периодически изменяться. Это, как правило, звуковые (ревун, сирена) или световые сигнализаторы. Управляет ими сигнал с выхода PD6 микроконтроллера.

С помощью порта B микроконтроллер DD1 опрашивает датчики и кнопки, управляет светодиодными индикаторами HG1, HG2. Индикация - динамическая. Транзисторы VT1 и VT2 по сигналам, формируемым микроконтроллером на выходах PD4 и PD5, поочерёдно подключают к источнику питания общие аноды индикаторов. Сформированные микроконтроллером на выводах порта B коды символов поступают на катоды элементов индикаторов через ограничивающие ток резисторы R4-R11. Вход PD3 микроконтроллера принимает сигналы состояния датчиков SF1 - SF7 и кнопок SB1-SB8.

Индикатор НG1 во время обратных отсчётов времени, сопровождающих смену режимов, отображает десятки секунд. В режиме 1 он отображает состояние датчиков SF1-SF7 и кнопок SB1-SB7, как показано на рис. 2. Замкнутым датчикам (кнопкам) соответствуют мигающие (залитые на рисунке) элементы индикатора.

Cветодиодный индикатор состояния

Рис. 2. Cветодиодный индикатор состояния

Индикатор НG2 отображает единицы секунд во время обратных отсчётов времени, а в промежутках между ними показывает номер текущего режима работы устройства (1, 2 или 3).

Переключатель SA1 служит для экстренного включения сигналов тревоги. Более подробно его работа будет описана далее.

Алгоритм работы устройства следующий. Допустим, переключатель SA1 установлен в верхнее (по схеме) положение. После подачи питания устройство начинает работу в режиме 1 - контроля состояния датчиков SF1-SF7 и кнопок SB1-SB7 без подачи сигналов тревоги и их отображения на индикаторе HG1. На индикатор HG2 в режиме 1 выведена цифра 1.

После нажатия на кнопку SB8 устройство из режима 1 переходит в режим 2. На индикаторы HG1 и HG2 выводится время 99 с, и начинается его обратный отсчёт. В течение обратного отсчёта времени нужно успеть закрыть все двери и окна охраняемого объекта и покинуть его. По его завершении на индикатор HG2 будет выведена цифра 2, а индикатор HG1 погашен. Десятичная точка (элемент H) индикатора HG2 мигает.

В режиме 2 замыкание контактов любого из датчиков SF1-SF7 начинает новый обратный отсчёт времени, который отображается на индикаторах HG1, HG2 и длится около 22 с. По его завершении подаётся сигнал тревоги. При необходимости сигнал тревоги может быть подан в любой момент независимо от состояния датчиков. Для этого достаточно подать напряжение низкого логического уровня на вход PD1 микроконтроллера. Это можно сделать переводом переключателя SA1 в нижнее по схеме положение или подачей соответствующего сигнала на контакт 1 разъёма XP2.

При тревоге устройство переходит в режим 3. Микроконтроллер DD1 формирует на выходе PD6 прямоугольные импульсы длительностью 1 с и с такими же паузами, периодически включая сирену или ревун, подключённый к разъёму XP4. Индикатор HG1 погашен. На индикатор HG2 выведена цифра 3, а его десятичная точка мигает. На выходе PD0 микроконтроллера DD1 в режиме 3 установлен низкий логический уровень напряжения. Это соответствует включению исполнительного устройства, подключённого к разъёму XP3. Сигналом с выхода PD2 микроконтроллера включён излучатель звука HA1.

Чтобы прекратить сигнал тревоги, необходимо возвратить переключатель SA1 в верхнее положение (если он был установлен в нижнее) и нажать на кнопку SB8. При этом уровень напряжения на выходах PD0, PD2 и PD6 микроконтроллера станет высоким. При нажатии на кнопку SB8 в режимах 2 и 3 устройство перейдёт в режим 1. Это значит, что для снятия объекта с охраны нужно за 22 с после открывания его двери успеть нажать на кнопку SB8. Желательно, чтобы доступ посторонних лиц к кнопкам SB1-SB8 и к переключателю SА1 был ограничен.

Питающие напряжения 5В и 15В поступают на устройство через разъём ХP1. Конденсатор C1 сглаживает пульсации напряжения в цепи +5 В. Потребление тока по этой цепи - не более 100 мА.

Конденсатор C1 - К50-35, а C2-C6 - К10-17а. Все резисторы - C2-33Н-0,125. Светодиодные индикаторы HG1 и HG2 с общим анодом зелёного цвета свечения. В качестве внешних контактных датчиков SF1-SF7 можно применять любые кнопки без фиксации в нажатом состоянии, например ПКн-105, или герконы с постоянными магнитами. Разъёмы XP1-XP5 - серии WF с соответствующим числом контактов. Устройство не требует никакой настройки и отладки.

Сигналы с разъёмов XP3 и XP4 должны управлять работающими от сети ~230 В исполнительными устройствами через электронные коммутаторы, построенные, например, по схеме, изображённой на рис. 3. Собственно коммутатором здесь служит симисторный блок А1 - БС-240-15/10-Н (URL: http:// files.contravt.ru/bs.pdf (09.01.2018)) с максимальным коммутируемым током 15 А и допустимым коммутируемым переменным напряжением 60...240 В частотой 50 Гц. Ток, потребляемый им по цепи управления, не более 15 мА. Этот блок можно заменить электромагнитным или твердотельным реле нужной для управления исполнительным устройством мощности. Разъём XP1 - HU-4, XS1 - стандартная сетевая розетка.

Схема коммутатора

Рис. 3. Схема коммутатора

Сигнальная неоновая лампа HL1 (со встроенным ограничивающим ток резистором) позволяет визуально контролировать подачу питающего напряжения на исполнительное устройство. Плавкие вставки FU1 и FU2 - ВП2-5А в держателях ДВП4- 1в. Ток их срабатывания выбирают исходя из предельного коммутируемого устройством тока.

Число независимых линий, к которым подключают датчики, можно увеличить, добавив в устройство ещё одну или несколько плат, собранных по показанной на рис. 1 схеме. Разъём XP2 каждой следующей платы соединяют с разъёмом XP3 предыдущей, причём должны соединяться контакты этих разъёмов, имеющие одинаковые номера. Переключатели SA1 всех плат устанавливают в верхнее по схеме положение.

При подаче одной из плат сигнала тревоги напряжение низкого уровня с выхода PD0 её микроконтроллера поступит на вход PD1 микроконтроллера следующей платы. Она тоже подаст сигнал тревоги. Таким же образом он распространится до последней в цепочке платы.

Программа микроконтроллера состоит из трёх основных частей: блока инициализации, основного блока, работающего в бесконечном цикле, и подпрограммы обработки прерывания от таймера T/C1 (соответственно метки INIT, SE1, TIM0). Сразу после подачи на микроконтроллер напряжения питания цепь R2C2 сформирует на его входе RESET сигнал установки в исходное состояние. По окончании этого импульса программа, прежде всего, выполняет инициализацию регистров, счётчиков, стека, таймера Т/С1, сторожевого таймера и портов ввода/вывода. В это время сигналы управления исполнительными устройствами соответствуют их выключенному состоянию.

Далее начинается исполнение основного блока программы, в котором происходят отсчёт времени, включение и выключение сигнала тревоги. В подпрограмме обработки прерывания идёт отсчёт односекундных интервалов времени, опрос состояния кнопок и датчиков, перекодировка двоичных значений в "семиэлементные" коды для отображения на светодиодных индикаторах и динамическая индикация.

В регистре r22 микроконтроллера организован регистр знакоместа. В регистр Y при инициализации программа заносит начальный адрес буфера отображения $060. Подпрограмма обработки прерывания при каждом вызове сдвигает содержимое регистра r22 на один разряд влево, а регистр Y инкрементирует. В памяти программ микроконтроллера эта программа занимает около 540 байт.

Программа микроконтроллера имеется здесь.

Автор: С. Шишкин, г. Саров Нижегородской обл.


Дата публикации: 10.03.2018
Мнения читателей

Нет комментариев. Ваш комментарий будет первый.


Вы можете оставить свой комментарий, мнение или вопрос по приведенному вышематериалу:








 



RadioRadar.net - datasheet, service manuals, схемы, электроника, компоненты, semiconductor,САПР, CAD, electronics