Р/л технология
Нашли ошибку? Сообщите нам ...Комментировать: Сварочный аппарат, собранный из деталей старых телевизоровРаспечатать: Сварочный аппарат, собранный из деталей старых телевизоров

Сварочный аппарат, собранный из деталей старых телевизоров



Многим в хозяйстве пригодился бы аппарат для электросварки деталей из черных металлов. Поскольку серийно выпускаемые сварочные аппараты довольно дороги, многие радиолюбители берутся за самостоятельное их изготовление. Об одном из таких устройств рассказывает эта статья.

С самого начала работы я поставил себе задачу создания максимально простого и дешевого сварочного аппарата с использованием в нем широко распространенных деталей и узлов. Из двух основных вариантов конструкции аппарата - со сварочным трансформатором или на основе конвертора - был выбран второй. Действительно, сварочный трансформатор - это значительный по сечению и тяжелый магнитопро-вод и много медного провода для обмоток, что для многих малодоступно. Электронные же компоненты для конвертора при их правильном выборе недефицитны и относительно дешевы.

Рис. 1

В результате довольно длительных экспериментов с различными вид
ами конвертора на транзисторах и трини-сторах была составлена схема, показанная на рис. 1. Простые транзисторные конверторы оказались чрезвычайно капризными и ненадежными, а три-нисторные без повреждения выдерживают замыкание выхода до момента срабатывания предохранителя. Кроме того, тринисторы нагреваются значительно меньше транзисторов.

Как легко видеть, схемное решение не отличается оригинальностью - это обычный однотактный конвертор, его достоинство - в простоте конструкции и отсутствии дефицитных комплектующих, в аппарате использовано много радиодеталей от старых телевизоров. И, наконец, он практически не требует налаживания.

Сварочный аппарат обладает следующими основными характеристиками:

Пределы регулирования сварочного тока, А........40... 130

Максимальное напряжение на электроде на холостом ходу, В........................90

Максимальный потребляемый от сети ток, А..............20

Напряжение в питающей сети переменного тока частотой 50 Гц, В .............220

Максимальный диаметр сварочного электрода, мм ..........3

Продолжительность нагрузки (ПН), %, при температуре воздуха 25 °С и выходном токе

100 А ......................60
130 А ......................40

Габариты аппарата, мм . .350х 180х 105

Масса аппарата без подводящих кабелей и электро-додержателя, кг...............5,5

Род сварочного тока - постоянный, регулирование - плавное. При сварке встык стальных листов толщиной 3 мм электродом диаметром 3 мм установившийся ток, потребляемый аппаратом от сети, не превышает 10 А.

Сварочное напряжение включают кнопкой, расположенной на электрододержателе, что позволяет, с одной стороны, использовать повышенное напряжение зажигания дуги и повысить электробезопасность, с другой, поскольку при отпускании электрододержателя напряжение на электроде автоматически отключается. Повышенное напряжение облегчает зажигание дуги и обеспечивает устойчивость ее горения.

Использование постоянного сварочного тока при обратной полярности сварочного напряжения позволяет соединять тонколистовые детали.

Сетевое напряжение выпрямляет диодный мост VD1-VD4. Выпрямленный ток, протекая через лампу HL1, начинает заряжать конденсатор С5. Лампа служит ограничителем зарядного тока и индикатором этого процесса. Сварку следует начинать только после того, как лампа HL1 погаснет.

Одновременно через дроссель L1 заряжаются конденсаторы батареи С6-С17. Свечение светодиода HL2 показывает, что аппарат включен в сеть. Тринистор VS1 пока закрыт.

При нажатии на кнопку SB1 запускается импульсный генератор на частоту 25 кГц, собранный на однопе-реходном транзисторе VT1. Импульсы генератора открывают тринистор VS2, который, в свою очередь, открывает соединенные параллельно тринисторы VS3-VS7. Конденсаторы С6-С17 разряжаются через дроссель L2 и первичную обмотку трансформатора Т1.

Цепь дроссель L2 - первичная обмотка трансформатора Т1 - конденсаторы С6-С17 представляет собой колебательный контур. Когда направление тока в контуре меняется на противоположное, ток начинает протекать через диоды VD8, VD9, а тринисторы VS3-VS7 закрываются до следующего импульса генератора на транзисторе VT1. Далее процесс повторяется.

Импульсы, возникающие на обмотке III трансформатора Т1, открывают тринистор VS1. который напрямую соединяет сетевой выпрямитель на диодах VD1 -VD4 с тринистор-ным преобразователем. Светодиод HL3 служит для индикации процесса генерации импульсного напряжения. Диоды VD11-VD34 выпрямляют сварочное напряжение, а конденсаторы С19- С24 - его сглаживают, облегчая тем самым зажигание сварочной дуги.

Выключателем SA1 служит пакетный или иной переключатель на ток не менее 16 А. Секция SA1.3 замыкает конденсатор С5 на резистор R6 при выключении и быстро разряжает этот конденсатор, что позволяет, не опасаясь поражения током, проводить осмотр и ремонт аппарата. Вентилятор ВН-2 (с электродвигателем М1 по схеме) обеспечивает принудительное охлаждение узлов устройства. Менее мощные вентиляторы использовать не рекомендуется, или их придется устанавливать несколько. Конденсатор С1 - любой, предназначенный для работы при переменном напряжении 220 В.

Выпрямительные диоды VD1-VD4 должны быть рассчитаны на ток не менее 16 А и обратное напряжение не менее 400 В. Их необходимо установить на пластинчатые уголковые теплоотво-ды размерами 60x15 мм толщиной 2 мм из алюминиевого сплава. Вместо одиночного конденсатора С5 можно использовать батарею из нескольких параллельно включенных на напряжение не менее 400 В каждый, при этом емкость батареи может быть больше указанной на схеме.

Дроссель L1 выполнен на стальном магнитопроводе ПЛ 12,5x25-50. Подойдет и любой другой магнитопровод такого же или большего сечения при выполнении условия размещаемости обмотки в его окне. Обмотка состоит из 175 витков провода ПЭВ-2 1,32 (провод меньшего диаметра использовать нельзя!). Магнитопровод должен иметь немагнитный зазор 0,3...0,5 мм. Индуктивность дросселя - 40±10 мкГн.

Конденсаторы С6-С24 должны обладать малым тангенсом угла диэлектрических потерь, а С6-С17 - еще и рабочим напряжением не менее 1000 В. Наилучшие из испытанных мною конденсаторов - К78-2, применявшиеся в телевизорах. Можно использовать и более широко распространенные конденсаторы этого типа другой емкости, доведя суммарную емкость до указанной в схеме, а также пленочные импортные. Попытки использовать бумажные или другие конденсаторы, рассчитанные на работу в низкочастотных цепях, приводят, как правило, к выходу их из строя через некоторое время.

Тринисторы КУ221 (VS2-VS7) желательно использовать с буквенным индексом А или в крайнем случае Б или Г. Как показала практика, во время работы аппарата заметно разогреваются катодные выводы тринисторов, из-за чего не исключено разрушение паек на плате и даже выход из строя тринисторов. Надежность будет выше, если на вывод катода тринисторов надеть либо трубки-пистоны, изготовленные из луженой медной фольги толщиной 0,1...0,15 мм, либо бандажи в виде плотно свернутой спирали из медной луженой проволоки диаметром 0,2 мм и пропаять по всей длине. Пистон (бандаж) должен покрывать вывод на всю длину почти до основания. Паять надо быстро, чтобы не перегреть тринистор.

У Вас возникнет вопрос: а нельзя ли вместо нескольких сравнительно маломощных тринисторов установить один мощный? Да, это возможно при использовании прибора, превосходящего (или хотя бы сравнимого) по своим частотным характеристикам тринисторы КУ221А. Но среди доступных, например, из серий ТЧ или ТЛ, таких нет. Переход же на низкочастотные приборы заставит понизить рабочую частоту с 25 до 4...6 кГц, а это приведет к ухудшению многих важнейших характеристик аппарата и громкому пронзительному писку при сварке.

Кроме этого, установлено, что один мощный тринистор менее надежен, чем несколько включенных параллельно, поскольку им легче обеспечить лучшие условия отведения тепла. Достаточно группу тринисторов установить на одну теплоотводящую пластину толщиной не менее 3 мм.

Поскольку токоуравнивающие резисторы R14-R18(C5-16 В) при сварке могут сильно разогреваться, их перед монтажом необходимо освободить от пластмассовой оболочки путем обжига или нагревания током, значение которого необходимо подобрать экспериментально.

Диоды VD8 и VD9 установлены на общем теплоотводе с тринисторами, причем диод VD9 изолирован от теплоотвода слюдяной прокладкой.

Вместо КД213А подойдут КД213Б и КД213В, а также КД2999Б, КД2997А, КД2997Б. При монтаже диодов и тринисторов применение теплопрово-дящей пасты обязательно.

Дроссель L2 представляет собой бескаркасную спираль из 11 витков провода сечением не менее 4 мм2 в термостойкой изоляции, намотанную на оправке диаметром 12...14 мм. Дроссель во время сварки сильно разогревается, поэтому при намотке спирали следует обеспечить между витками зазор 1...1.5 мм, а располагать дроссель необходимо так, чтобы он находился в потоке воздуха от вентилятора.


Рис. 2

Магнитопровод трансформатора Т1 составлен из трех сложенных вместе магнитопро-водов ПК30х16 из феррита 3000НМС-1 (на них выполняли строчные трансформаторы старых телевизоров). Первичная и вторичная обмотки разделены на две секции каждая (см. рис. 2), намотанные проводом ПСД1,68х10,4 в стеклотканевой изоляции и соединенные последовательно согласно. Первичная обмотка содержит 2x4 витка, вторичная - 2x2 витка.

Секции наматывают на специально изготовленную деревянную оправку. От разматывания витков секции предохраняют по два бандажа из луженой медной проволоки диаметром 0,8...1 мм. Ширина бандажа - 10...11 мм. Под каждый бандаж под-кладывают полосу из электрокартона или наматывают несколько витков ленты из стеклоткани. После намотки бандажи пропаивают.

Один из бандажей каждой секции служит выводом ее начала. Для этого изоляцию под бандажом выполняют так, чтобы с внутренней стороны он непосредственно соприкасался с началом обмотки секции. После намотки бандаж припаивают к началу секции, для чего с этого участка витка заранее удаляют изоляцию и облуживают его.

Следует иметь в виду, что в наиболее тяжелом тепловом режиме работает обмотка I. По этой причине при наматывании ее секций и при сборке следует между наружными частями витков предусмотреть воздушные зазоры, вкладывая между витками короткие, смазанные теплостойким клеем, вставки из стеклотекстолита. Вообще, чем больше воздушных зазоров в обмотках, тем эффективнее будет отведение тепла от трансформатора.

Здесь уместно отметить также, что секции обмоток, изготовленные с упомянутыми вставками и прокладками проводом того же сечения 1,68x10,4 мм2 без изоляции, будут в тех же условиях охлаждаться лучше.

Далее обе секции первичной обмотки складывают вместе одну на другую так, чтобы направления их намотки (отсчитываемые от их концов) были противоположными, а концы находились с одной стороны (см. рис. 2). Соприкасающиеся бандажи соединяют пайкой, причем к передним, служащим выводами секций, целесообразно припаять медную накладку в виде короткого отрезка провода, из которого выполнена секция.

В результате получается жесткая неразъемная первичная обмотка трансформатора. Вторичную изготовляют аналогично. Разница только в числе витков в секциях и в том, что необходимо предусмотреть вывод от средней точки.

Обмотки устанавливают на магнитопровод строго определенным образом - это необходимо для правильной работы выпрямителя VD11 - VD32. Направление намотки верхней секции обмотки I (если смотреть на трансформатор сверху) должно быть против часовой стрелки, начиная от верхнего вывода, который необходимо подключить к дросселю L2. Направление намотки верхней секции обмотки II, наоборот, - по часовой стрелке, начиная от верхнего вывода, его подключают к блоку диодов VD21-VD32.

Обмотка III представляет собой виток любого провода диаметром 0,35...0,5 мм в теплостойкой изоляции, выдерживающей напряжение не менее 500 В. Его можно разместить в последнюю очередь в любом месте магнитопровода со стороны первичной обмотки.



Рис. 3

Для обеспечения электробезопасности сварочного аппарата и эффективного охлаждения потоком воздуха всех элементов трансформатора очень важно выдержать необходимые зазоры между обмотками и магнито-проводом. Эту задачу выполняют четыре фиксирующие пластины, закладываемые в обмотки при окончательной сборке узла. Пластины изготовляют из стеклотекстолита толщиной 1,5 мм в соответствии с чертежом на рис. 3. После окончательной регулировки пластины целесообразно закрепить термостойким клеем.

Трансформатор крепят к основанию аппарата тремя скобами, согнутыми из латунной или медной проволоки диаметром 3 мм. Эти же скобы фиксируют взаимное положение всех элементов магнитопровода. Перед монтажом трансформатора на основание между половинами каждого из трех комплектов магнитопровода необходимо вложить немагнитные прокладки из электрокартона, гетинакса или текстолита толщиной 0,2...0,3 мм.

Для изготовления трансформатора можно использовать магнитопроводы и других типоразмеров сечением не менее 5,6 см2. Подойдут, например, Ш20х28 или два комплекта Ш 16x20 из феррита 2000НМ1. Обмотку I для броневого магнитопровода изготовляют в виде единой секции из восьми витков, обмотку II - аналогично описанному выше, из двух секций по два витка.



Рис. 4

Сварочный выпрямитель на диодах VD11-VD34 конструктивно представляет собой отдельный блок, выполненный в виде этажерки (см. рис. 4). Она собрана так, что каждая пара диодов оказывается помещенной между двумя теплоотводящими пластинами размерами 44x42 мм и толщиной 1 мм, изготовленными из листового алюминиевого сплава. Весь пакет стянут четырьмя стальными резьбовыми шпильками диаметром 3 мм между двух фланцев толщиной 2 мм (из такого же материала, что и пластины), к которым винтами прикреплены с двух сторон две платы, образующие выводы выпрямителя.

Все диоды в блоке ориентированы одинаково - выводами катода вправо по рисунку - и впаяны выводами в отверстия платы, которая служит общим плюсовым выводом выпрямителя и аппарата в целом. Анодные выводы диодов впаяны в отверстия второй платы. На ней сформированы две группы выводов, подключаемые к крайним выводам обмотки II трансформатора согласно схеме.

Учитывая большой общий ток, протекающий через выпрямитель, каждый из трех его выводов выполнен из нескольких отрезков провода длиной 50 мм, впаянных каждый в свое отверстие и соединенных пайкой на противоположном конце. Группа из десяти диодов подключена пятью отрезками, из четырнадцати - шестью, вторая плата с общей точкой всех диодов - шестью. Провод лучше использовать гибкий, сечением не менее 4 мм. Таким же образом выполнены сильноточные групповые выводы от основной печатной платы аппарата.

Платы выпрямителя изготовлены из фольгированного стеклотекстолита толщиной 0,5 мм и облужены. Четыре узкие прорези в каждой плате способствуют уменьшению нагрузок на выводы диодов при температурных деформациях. Для этой же цели выводы диодов необходимо отформовать, как показано на рис. 4.

В сварочном выпрямителе можно также использовать более мощные диоды КД2999Б, 2Д2999Б, КД2997А, КД2997Б, 2Д2997А, 2Д2997Б. Их число может быть меньшим. Так, в одном из вариантов аппарата успешно работал выпрямитель из девяти диодов 2Д2997А (пять - в одном плече, четыре - в другом). Площадь пластин теплоотвода осталась прежней, толщину их оказалось возможным увеличить до 2 мм. Диоды были размещены не попарно, а по одному в каждом отсеке.


Дата публикации: 23.11.2007

Рекомендуем к данному материалу ...


Мнения читателей
  • nikolaj / 07.12.2016 - 16:22
    http://forum.cxem.net/index.php?/topic/22301-сварочный-аппарат-из-деталей-старых-телевизоров/&page=588 .Здесь все подробно описано и разжевано!
  • вітя / 15.07.2015 - 22:56
    так працює схема чи ні
  • hakob / 20.01.2015 - 18:21
    skolk@ volt dljno bit vtarichnom admotke ?ctobi xaraso svarit
  • ну вот / 15.04.2014 - 18:52
    Подобрал идеальные ку221А. Даже кз аппарата терпели и стоило добавить 6-й с небольшим отклонением по параметрам как он тут-же летел в ведро. Но даже с этой фантастической пятеркою аппарат так и не заработал как надо. При емкости с6-с19 100нФ аппарат с легкостью выходил в ультразвук и стальная пружина 2.5мм толщиною прутка которая играла роль нагрузки- накалялась до свечения но при зажигании дуги летят тиристоры. Что за фантом. При емкости 800нФ входит в кз. Что уж говорить про 1100нФ.
  • вит / 17.01.2014 - 18:16
    спасибо автору.Аппарат работает уже три года отлично.
  • sergey savchuk / 04.05.2013 - 19:53
    слышал, что есть разработки сварочных аппаратов даже на водородных топливных элементах: http://scsiexplorer.com.ua/index.php/novie-razrabotki/energetika/882-vodorodnyj-toplivnyj-element.html
  • Нельсон / 28.03.2013 - 21:13
    Мужики вы что ? Схему лично делал года три назад под заказ. Даже был у меня паспорт заводского аппарата по именно такой схеме с незначительными переделками в генераторе! Схему в сеть включил через киловаттную лампу - заработала без всякой настройки! вначале собрал на соплах, затем генератор перевел на плате, все остальное висело в воздухе. Корпусом у меня служил каркас от генератора (модель не помню) Вся схема была под отдувом.
  • андрей / 14.01.2013 - 18:22
    схема странноватая можно попробовать мп 3 от тв 3го поколения блок питания умощнить входные диоды вх емкость вместо ключевого 838го поставить 4 транс заменить на 4 строчника как описано в этой статье навыход штук 10 авто диодов почти неубиваемые подумать процепь обратной связи ирезистор вколлекторной цепи ключа ивперед модуль мп3 это практически блок управления инвертора со всеми защитами и регулировкой по выходу сам этим пока не занимался атем кто пожег подстанцию ипол деревни советую подобные ус ва включать в сеть через лампу 200 300вт
  • Заглянувший / 13.12.2012 - 10:16
    У кого работает данный девайс?Видео киньте.
  • Андрей23 / 07.12.2012 - 15:34
    Кто писал что схема не правильная - это просто не грамотный человек не разбирающийся в электронике. Автору большой респект. Ведь эта схема не была придумана, а просто взята с импортного сварочного аппарата и переведена на доступный всем язык (без изменений в схеме).
  • юрий / 16.10.2012 - 09:16
    Схема разработана неграмотно-параллельное включение управляющих переходов силовых тиристоров недопустимо,никогда они не получат правильного и одинакового тока управления
  • Syahputra / 18.06.2012 - 04:21
    Shoot, who would have thuoght that it was that easy?
  • Gabriel / 18.06.2012 - 04:19
    That's not just the best answer. It's the bestset answer!
  • 1 / 12.06.2012 - 13:29
    Может пригодится кому. На выходе стоит поставить маломощную галогенку на 220В, тогда выходные диоды не будут страдать от неожиданного превышения выходного напряжения , которое может возрасти до 110-115В. Дабы исключить холостой ход да и насыщение трансформатора. У схемы есть грубейшая ошибка, ведь напряжение на пусковой кнопке великовато, а при работе в тяжелых условиях и при высокой влажности может изрядно потрясти сварщика. Меня при настройке не раз цепляло и я решил встроить релейное управление (дистанционное), запитанным маломощным 12 вольтовым БП, оттуда и кулеры запитаны. На выходе думаю поставить усиленный конденсатор. Разбираем советский железный конденсатор на 4-6 мкф 600В и припаиваем по всей ширине конденсаторной фольги - толстые медные выводы. И готовую конструкцию заливаем эпоксидным составом.
  • Александрион / 03.05.2012 - 15:17
    Кстати всем сваркостроителям. Управляющим тиристором оставляйте КУ221А, он потянет любые выходные тиры, к томуж он чемпион по частоте. А на выходе можно ставить любые быстродействующие на ток не менее 10ампер каждый. Лучше 25-80 ампер.
  • Александрион / 02.05.2012 - 09:14
    Работал с ВТ151 и незнал проблем. Но как перейшел на КУ221А сразу открыл свое кладбище радиодеталей. Не стоит на них тратиться! Я вот думаю на ТЧ25 ампераж и частота поболее чем у ВТ.
  • в / 22.04.2012 - 11:46
    интересно!!!
  • влад / 22.04.2012 - 11:45
    интересно!!!!
  • влад / 22.04.2012 - 11:44
    интересно!!!!
  • Александрион / 15.04.2012 - 10:36
    Вопрос для автора. Если все так жалуются на ку221, например уменя есть 10 штук и хочу для надежности поставить их все в параллель, а также уравнивающие тиристоры увеличить до 0.3-0.5 ом, то не скажется ли это на работе аппарата. Заранее спасибо.
1 23456  Вперед

Вы можете оставить свой комментарий, мнение или вопрос по приведенному вышематериалу:








 



RadioRadar.net - datasheet, service manuals, схемы, электроника, компоненты, semiconductor,САПР, CAD, electronics