В профессиональной и радиолюбительской практике приходится встречаться с необходимостью измерения ультрамалого сопротивления. В статье рассказывается о возникающих при этом проблемах и способах их решения.
К числу задач, требующих измерения сопротивлений вплоть до 1 мОм с заданной точностью, относятся, например, изготовление шунтов (в том числе и для измерительных приборов), измерение переходного сопротивления контактов реле, переключателей и т. п. Аналогичная задача возникает и при необходимости отбора мощных полевых транзисторов по критерию сопротивления открытого канала, поскольку у современных транзисторов это значение доходит до нескольких миллиом.
В широко распространенных методах измерения последовательно с измеряемым сопротивлением Rx неизбежно включено паразитное сопротивление Rn, образованное соединительными проводами, переходным сопротивлением входных клемм или гнезд, контактных переключателей и т. п. Сопротивление Rn обычно находится в пределах 0,4...0,1 Ом; конкретное его значение зависит от ряда причин, в том числе и типа прибора. Например, в цифровых мульти-метрах с автоматическим переключением предела измерений оно меньше, чем у приборов с контактными переключателями. Измерить сопротивление Rn предельно просто - достаточно установить нижний предел измерения омметра и замкнуть щупы. Такие измерения являются также проверкой состояния контактов, которую целесообразно периодически проводить, особенно для мультиметров с галетными переключателями. При хорошем состоянии контактов сопротивление не должно превышать вышеуказанного значения 0,4 Ом, при большем - прибор следует разобрать и почистить контакты. Для получения надежных результатов измерения следует провести несколько раз, после каждого проворачивая переключатель по кругу.
Ввиду того что сопротивление Rn включено последовательно с Rx, омметр измеряет их суммарное значение. Конечно, для больших значений сопротивления эта ошибка невелика и ее не учитывают. Иначе обстоит дело при измерении малых значений. Несложно заметить, что для значений RX) соизмеримых с сопротивлением Rn, измерение в принципе еще возможно, хотя о точности говорить уже не приходится. Другими словами, именно значение Rn является основным фактором, ограничивающим предел измерения сопротивления "снизу", и поэтому в широко распространенных цифровых мульти метрах нижний предел измерения равен 200 Ом, что соответствует цене единицы младшего разряда 0,1 Ом. Для приборов, имеющих АЦП 41/г разряда, цена единицы младшего разряда составляет 0,01 Ом, поэтому в таких цифровых мультметрах нередко есть возможность учесть в показаниях влияние сопротивления подводящих проводов
Из изложенного понятно, что для измерения ультрамалого сопротивления необходим измеритель с нулевым значением Rn Технически, конечно, возможно создание прибора с весьма малым значением Rm однако полностью исключить его нереально - законы физики не позволяют.
Рис. 1
Это действительно так для обычных, применяемых в аналоговых и цифровых омметрах, методов измерения сопротивления Тем не менее эта задача давно успешно решена в более сложных приборах для измерения малых значений сопротивления методом амперметра и милливольтметра [1]. Подобный метод используют и в геофизических исследованиях, где аналогичные проблемы возникают при измерении электросопротивления земных пород. Конечно, сопротивления земных пород не являются ультрамалыми и в зависимости от вида пород и их состояния (сухие, влажные, талые, мерзлые и т. п.) меняются в самых широких пределах, но суть проблемы такая же - исключить влияние переходного сопротивления. В геофизике - это сопротивление забитых в землю измерительных электродов, но конкретная причина появления переходных сопротивлений и порядок их значений не являются суть важными. Важно лишь то, что необходимо измерить сопротивление в условиях, когда переходные сопротивления соизмеримы или даже превышают (иногда даже значительно) измеряемое. Метод, позволяющий полностью исключить влияние переходных сопротивлений, получил название "метода четырех зондов". Насколько важен этот метод в геофизике, можно судить хотя бы по тому, что на нем основана вся электроразведка, в том числе и вертикальное электрозондирование (ВЭЗ).
Суть метода можно выразить следующей фразой: "если избавиться от паразитного сопротивления невозможно, то следует исключить его влияние". Изложенное поясняется рисунком. Через измеряемое сопротивление Rx пропускают ток, регулируемый балластным резистором R6 и контролируемый амперметром РА1 Падение напряжения на Rx измеряют милливольтметром PV1. Обратите внимание - вольтметр подключен непосредственно к Rx, поэтому влияние Rn полностью исключается. При этом, правда, появляется паразитное сопротивление Rnv в цепи вольтметра, образуемое контактным сопротивлением в точках подключения вольтметра (на рисунке показаны стрелками) и сопротивлением соединительных проводов вольтметра. Однако влияние Rnv пренебрежимо мало и его можно не учитывать, поскольку условие Rv > Rnv (где Rv - входное сопротивление вольтметра) выполняется практически всегда Действительно, минимальное значение входного сопротивления мультимет-ра у самых простых моделей составляет 1 МОм, а значение Rnv заведомо меньше 1 кОм. Значение Rx измеряемого сопротивления вычисляют по известной простейшей формуле Rx= U/I.
Выбор тока в измерительной цепи осуществляют исходя из требований к точности измерения сопротивления Модуль (абсолютное значение) относительной погрешности измерения сопротивления является суммой модулей относительных погрешностей измерения тока и напряжения. Для простоты (или просто для определенности в начале расчета) разделим эту погрешность поровну для тока и напряжения. Например, если требуемая погрешность измерения сопротивления не более 2 %, то для тока и напряжения следует применять приборы не хуже класса 1,5. Цифровые мультиметры в большинстве случаев обеспечивают необходимую точность измерения тока, и с этим проблем обычно не возникает. Несколько сложнее обстоит дело с измерением напряжения. Покажем это на примере измерения сопротивления 1 мОм. При токе 0,1 А падение напряжения составит 0,1 мВ, что для приборов с АЦП 31/г разряда на пределе 200 мВ соответствует единице младшего разряда и измерение невозможно. При токе 1 А измерение возможно, хотя и с заметной погрешностью. Конечно, полный расчет погрешности измерения возможно провести лишь для конкретного случая с конкретными приборами, и в статье приведены лишь общие принципы ее определения.
Вычисление погрешности измерения для многих может показаться слишком сложным или даже вообще ненужным. Поэтому стоит напомнить старую истину - измерение, точность которого неизвестна, бессмысленно. Другими словами, если нельзя определить (или хотя бы оценить) точность измерения, то нет смысла тратить время и силы на его проведение. К этому еще можно добавить тот печальный факт, что практически все находящиеся сейчас в эксплуатации измерительные приборы не аттестованы (не прошли метрологической поверки), поэтому реальная точность их неизвестна и остается лишь доверять приведенным в паспорте данным.
Конечно, измерение методом четырех зондов существенно сложнее, чем обычным омметром - необходимы два измерительных прибора, источник питания и дополнительный переменный резистор; да и само проведение измерения требует больше времени. К тому же еще нужны некоторые расчеты. Но поскольку при этом применяется стандартная измерительная аппаратура, а проводить такие измерения приходится не слишком часто, с этим вполне можно смириться.
Несколько проще этот метод можно реализовать радиолюбителям при измерениях малых сопротивлений и с одним милливольтметром, используя источник стабильного тока с образцовым резистором, как это предложено сделать в миллиомме-тре, описанном в [2].
Литература:
- Попов В. С. Электротехнические измерения и приборы. - Госэнергоиздат, 1956, с. 186.
- Компаненко Л. Миллиомметр. - Радио, 2006, № 5. с. 23.
Автор: А.Межлумян, г. Москва