на главную
Карта сайта
English version
Вы читаете:

Подавление помех от импульсных источников питания

Разное
6 лет назад

Подавление помех от импульсных источников питания

4

Импульсные блоки питания в большинстве случаев создают основную электромагнитную "пелену" помех в полосе частот 1...100 МГц, т. е. во всех КВ-диапазонах и в начале УКВ. Дело осложняется и тем, что число таких блоков исчисляется сегодня десятками в одном жилище (компьютеры, мониторы, освещение, различные зарядные устройства и т. п.) и сотнями в одном доме - в ближней зоне КВ-антенны любительской радиостанции.

Даже если предположить идеальный случай - соответствие нормам на паразитное излучение всех близлежащих блоков питания, то сумма нескольких десятков паразитных полей явно будет выше нормы. И в своём КВ-приёмнике вы услышите массу паразитных сигналов, которые, по нерушимому закону "падающего бутерброда", окажутся на частоте DX. В реальности же среди десятков окружающих вас импульсных блоков питания найдутся и те, в которых фильтрация помех сделана плохо, а то и вовсе отсутствует. Один такой блок может закрыть возможность приёма во всей полосе КВ в радиусе десятков метров. Поэтому важно знать, как подавлять паразитное излучение кабелей импульсного блока питания, чтобы правильно дорабатывать существующие устройства и выбирать новые.

На рис. 1 приведена упрощённая схема импульсного блока питания. Точнее, узел преобразования напряжения показан предельно упрощённо, а вот цепи подавления помех, наоборот, полностью. И общий случай питания - от трёхпроводной (с отдельным проводом электротехнического заземления) розетки.

Схема импульсного блока питания

Рис. 1. Схема импульсного блока питания

 

Дроссели L1 и L2 подавляют синфазные помехи, идущие от блока питания и подключённого к нему устройства (например, трансивера с антенной) в сетевой провод и далее в линии электропитания. Обмотки дросселя L1 обычно имеют индуктивность около 30 мГн. Это основные элементы подавления помех в питающей сети. Поэтому они должны быть качественными и обладать высоким импедансом во всей подавляемой полосе, начиная от частоты переключения транзистора блока питания (десятки-сотни килогерц) до нескольких мегагерц.

А в ответственных случаях (чувствительные приёмники и их антенны рядом) - до десятков-сотен мегагерц. Один дроссель это сделать не может. Поэтому в таких случаях последовательно с L1 и L2 включают такие же дроссели, но с индуктивностью в 50...500 раз меньшей, чем указано на рис. 1. Эти дополнительные дроссели должны иметь высокую собственную резонансную частоту, чтобы эффективно подавлять верхние частоты требуемой полосы.

Конденсатор С1 подавляет низкочастотные дифференциальные помехи, идущие от блока питания в сеть. Высокочастотные синфазные помехи подавляют керамические конденсаторы малой ёмкости С2 и С3, включённые параллельно С1.

Но это не единственная функция С2 и С3. Они также замыкают синфазную составляющую импульсов переключения на корпус устройства.

Разберёмся с этим подробнее. На стоке силового транзистора присутствуют прямоугольные импульсы с размахом около 300 В (выпрямленное и отфильтрованное напряжение сети) с частотой несколько десятков-сотен килогерц. Фронты этих импульсов короткие (меньше микросекунды). Во время этих фронтов ключевой транзистор находится в активном режиме и греется, поэтому фронты стараются сделать короче. Но это расширяет полосу создаваемых помех. И всё равно в мощных блоках питания транзистор нагревается. Для охлаждения его закрепляют на теплоотводе, в качестве которого в некоторых случаях используют металлический корпус блока питания (про экранирование не забываем). Транзистор изолируют от корпуса прокладкой. Ёмкость стока на корпус может достигать нескольких десятков пикофарад.

А теперь посмотрим, что у нас получилось: транзисторный генератор прямоугольных импульсов с размахом 300 В через конденсатор в несколько десятков пикофарад (конструктивный между стоком охлаждаемого транзистора и корпусом устройства на рис. 1 показан штриховыми линиями) подключён к корпусам и блока питания, и питаемого им устройства. Мы считаем, что это корпус с нулевым потенциалом, а на самом деле там протекает большой ВЧ-ток через конструктивную ёмкость теплоотвода. Это приведёт к появлению большого синфазного тока (а значит, и помех) на корпусах всех устройств, подключённых к нашему источнику питания.

Чтобы такого не было, установлены конденсаторы C2 и С3. Фронты импульсов со стока транзистора, просочившиеся через конструктивную ёмкость теплоотвода, через эти конденсаторы и диоды моста (точнее, через диод, открытый в данный момент) замыкаются на исток транзистора. Этот путь для них оказывается проще, чем синфазно растекаться по корпусам.

Но проблемы с высоковольтными короткими фронтами импульсов на стоке силового транзистора не заканчиваются с установкой конденсаторов С2 и С3. Есть ещё одна паразитная ёмкость - между обмотками трансформатора (тоже показана на рис. 1 штриховыми линиями). Через неё импульсы тока поступают в выходную цепь блока питания. Сразу в оба провода, т. е. как синфазная помеха. Конденсатор С4 замыкает эти токи на исток транзистора, создавая им более лёгкий путь для протекания.

Конденсаторы С2-С4 оказываются включёнными между безопасными для человека цепями (выходами и корпусом источника) и силовой сетью 230 В. Для обеспечения безопасности людей номинальное напряжение этих конденсаторов делают очень высоким (несколько киловольт), а их конструкцию такой, чтобы в случае аварии они обрывались, а не замыкались. Конденсаторы, устанавливаемые на месте С2-С4, выпускаются как отдельный тип и называются Y-конденсаторами. Конденсаторы с маркировкой Y1 рассчитаны на импульсы напряжения до 8 кВ, Y2 - до 5 кВ.

С точки зрения подавления помех, ёмкость конденсаторов С2-С4 желательно иметь побольше. Но надо иметь в виду, что при двухпроводной сети (или обрыве провода заземления в трёхпроводной) выходы и корпус источника через конденсаторы С2-С4 оказываются соединёнными с сетевым фазным проводом. Поэтому их суммарная ёмкость должна выбираться так, чтобы ток частотой 50 Гц на корпус не превышал 0,5 мА (неприятно, но не смертельно). С учётом возможного максимального напряжения в сети, разброса, температурных уходов и старения получается не более 5000 пФ.

Рассмотрим теперь ошибки, допускаемые в фильтрации помех импульсных источников.

Иногда, для экономии, ставят только один из двух конденсаторов С2 или С3. Идея, на первый взгляд, кажется разумной: всё равно ведь они соединены параллельно через большую ёмкость конденсатора С1. Но на высоких частотах конденсаторы большой ёмкости совсем не являются коротким замыканием, а имеют заметный индуктивный импеданс. Поэтому такая экономия может привести к тому, что на десятках мегагерц (выше резонансной частоты С1, которая окажется невелика, поскольку это конденсатор большой ёмкости) заметно снизится подавление синфазного тока, протекающего на корпус.

Встречается отсутствие конденсатора С4 - или производитель решает, что можно С4 не устанавливать, так как в его трансформаторе ёмкость мала, или пытливый потребитель выкусывает, чтобы от источника не пощипывало током утечки 50 Гц через этот конденсатор. Внешними цепями эта проблема не лечится (хотя хороший внешний развязывающий дроссель по выходным цепям снижает остроту проблемы), надо ставить С4 на его законное место.

Отсутствие С2, С3 может быть допустимо, но только если выполняются все три следующих условия сразу: сеть двухпроводная, корпус блока питания не имеет контакта с корпусами питаемых устройств (пластмассовый, например), силовой транзистор установлен не на теплоотводе-корпусе. Если хотя бы одно из условий нарушено, С2 и С3 должны быть.

Установка перемычек вместо основного развязывающего дросселя L1 редко, но всё же встречается в дешёвых источниках плохих производителей. Экономят, видимо. Лечится это установкой нормального дросселя. В крайнем случае такой дроссель можно сделать, намотав сетевой шнур на большом ферритовом магнитопроводе.

Перемычка вместо L2 встречается, увы, часто, даже у приличных производителей. Видимо, полагают, что раз в двухпроводной сети этот дроссель не нужен (а там он действительно не требуется, току некуда течь), то без него можно обойтись и в трёхпроводной. Увы, нет, поскольку это открывает прямую дорогу в сеть для синфазных помех (и помех из сети на корпус). Исправляется установкой L2 в разрыв провода между разъёмом сети и платой. На худой конец допустим внешний дроссель на сетевом шнуре.

В завершение рассмотрим частую ошибку, которая относится не только к импульсным, но и ко всем блокам питания. Нередко слева (по рис. 1) от L1 устанавливают дополнительные конденсаторы, как показано на рис. 2. Они должны блокировать чужие помехи, идущие из сети в источник питания. Конденсатор С1 блокирует дифференциальные помехи и нам не мешает. А вот конденсаторы С2 и С3, замыкающие синфазные помехи в сетевых проводах на земляной провод, могут стать причиной соединения по ВЧ корпуса устройства и силовых (фазы и нуля) проводов сети. Это произойдёт, если среднюю точку С2 и С3 соединить с корпусом устройства, как показано штриховой линией красного цвета на рис. 2. Делать так нельзя (хотя печально, часто именно так и подключают). ВЧ синфазные помехи из сети пойдут через С2 и С3 на корпус устройства. И назад: синфазные токи устройства (например, трансивера с антенной) потекут в сеть. Правильное подключение средней точки С2 и С3 должно быть только к выводу заземления трёхпроводной розетки, но не к корпусу устройства, т. е. к левому выводу дросселя L2, как показано линией зелёного цвета на рис. 2.

Схема блока питания

Рис. 2. Схема блока питания

 

Если используется двухпроводная питающая сеть, то проверьте, нет ли в вашем блоке питания конденсаторов с проводов сети на корпус устройства. И если есть, удалите их, так как это прямая дорога для ВЧ синфазных токов из сети в ваше устройство и назад.

А если сеть трёхпроводная, то установите дроссель L2 между корпусом своего устройства и землёй сети (он разорвёт путь для синфазных токов между ними), а среднюю точку входных конденсаторов (С2, С3 по рис. 2) переместите на землю сети.

Сетевой фильтр, показанный на рис. 2 с конденсаторами С1-С3, является общим случаем для питания любых устройств, генерирующих радиочастотные помехи, например КВ-передатчиков.

Автор: Игорь Гончаренко (DL2KQ), г. Бонн, Германия

Мнения читателей
  • admin/27.02.2020 - 18:26

    Поправили.

  • Николай/27.02.2020 - 02:19

    Исправьте в конце-концов фамилию автора на Гончаренко.

  • Перець/16.03.2019 - 10:57

    Нічого не запутано.На мал.1 С2 і С3 знаходяться після дросселя L1. А на мал.2 C2 і C3 знаходяться до дросселя L1. Тому і точка заземлення різна. P.S. Прізвище автора статті - Гончаренко, а не Гочарко.

  • Андрей/15.05.2018 - 02:55

    Запутанно как-то, на рис.1 С2,С3 идут на корпус прибора, а на рис.2 они идут землю. Как правильно?

Electronic Components Distributor - HQonline Electronics