на главную
Карта сайта
English version
Вы читаете:

Варисторы как средство защиты радиоэлектронной аппаратуры - RadioRadar

Документация
21 год назад

Варисторы как средство защиты радиоэлектронной аппаратуры

33

Оглавление

   Надежность работы радиоэлектронной аппаратуры во многом определяется качеством питающих электрических сетей, в которых могут иметь место перенапряжения длительностью от сотен миллисекунд до нескольких секунд, провалы напряжения длительностью до десятков миллисекунд, пропадания (отсутствие напряжения более одного периода) и так далее. На рис. 1 показаны наиболее часто встречающиеся неполадки в электросети и их процентное соотношение.

   Особенно опасны высоковольтные импульсы амплитудой до нескольких киловольт и длительностью от десятков наносекунд до сотен микросекунд. Именно они могут приводить к серьезным сбоям электронной аппаратуры и выходу ее из строя, а также быть причиной пробоя изоляции проводов и даже их возгорания.

   Импульсы напряжения, которые можно отнести к внешним сетевым помехам (рис. 2), возникают в различных цепях аппаратуры, в первую очередь, в проводах питания.

   Во-первых, они могут наводиться электромагнитными импульсами искусственного происхождения от передающих радиостанций, высоковольтных линий электропередач, сетей электрифицированных железных дорог, электросварочных аппаратов.




Рис. 1

   Идентифицировать и систематизировать причины таких помех практически невозможно. Однако для бытовых электрических сетей напряжением 220 В приняты следующие ориентировочные параметры внешних импульсных напряжений:

  • амплитуда — до 6 кВ;
  • частота — 0,05...5 МГц;
  • длительность — 0,1...100 мкс.

   Во-вторых, они могут быть естественного происхождения и наводиться мощными грозовыми разрядами.

Неполадки в электросети и их процентное соотношение

Рис. 2

   В-третьих, они могут создаваться статическим напряжением, разряд которого достигает 25 кВ. Высоковольтные импульсы способны возникать и в самой аппаратуре при ее функционировании в результате переходных процессов, при срабатывании электромагнитов, размыкании контактов реле, коммутации реактивных нагрузок и так далее. Наибольшую угрозу представляют импульсы, возникающие при отключении индуктивной нагрузки.

   По указанным причинам радиоэлектронная аппаратура должна быть защищена от высоковольтных импульсных помех. Чтобы аппаратура могла быть сертифицирована, она должна пройти проверку на устойчивость к воздействию импульсных помех. Например, ГОСТ Р 51317.4.4-99 (МЭК 61000-4-4-95) распространяется на электротехнические, электронные и радиоэлектронные изделия и устанавливает требования и методы их испытаний на устойчивость к наносекундным импульсным помехам (НИП).

   В настоящее время для защиты радиоэлектронной аппаратуры от внешних импульсных воздействий применяются различные виды экранировки, RC- и LC-фильтры, газоразрядные приборы (разрядники) и полупроводниковые ограничители напряжения (ПОН). К сожалению, разрядники не обладают необходимым быстродействием, а быстродействующие ПОН, с высокой нелинейностью вольтамперной характеристики (ВАХ) не способны рассеивать большую мощность из-за малого объема p-n-перехода. Это обуславливает резкое уменьшение допустимого тока в импульсе, протекающем через прибор.

   В последнее время наиболее эффективным средством защиты аппаратуры от любых импульсных напряжений признаны оксидно-цинковые варисторы. Варисторы [англ. varistor, от vari (able) - переменный и (resi) stor - резистор] - это нелинейные резисторы, сопротивление которых зависит от приложенного напряжения. Отличительной чертой варистора является двухсторонняя симметричная и резко выраженная нелинейная ВАХ (рис. 3).

Нелинейная ВАХ варистора

Рис. 3

   Электрические характеристики варистора определяются большим сопротивлением утечки и емкостью, которая незначительно изменяется под воздействием напряжения и температуры.

   При больших напряжениях на варисторе, и соответственно, больших токах, проходящих через него, плотность тока в точечных контактах оказывается также большой. Разогрев точечных контактов приводит к уменьшению их сопротивления и, как следствие, к нелинейности ВАХ. Малые объемы активных областей обеспечивают малую инерционность тепловых процессов, что определяет их высокое быстродействие. Наряду с этим варисторы способны хорошо поглощать высокоэнергетические импульсы напряжения, так как тепловая энергия рассеивается не на отдельных зернах полупроводника, а на всем его объеме.

   Особенностью ВАХ варистора является наличие участка малых токов (условно от нуля до нескольких миллиампер), в котором находится рабочая точка варистора и участок больших токов, который определяет защитные свойства и, в частности, напряжение ограничения. В области малых токов ВАХ описывается выражением:

   I=AUβ,
где I - ток, A; U - напряжение, В; А — коэффициент, значение которого зависит от типа варистора и от температуры; β — коэффициент нелинейности, который характеризует крутизну ВАХ и определяется отношением статического сопротивления варистора (R = U/I) к дифференциальному (r = dU/dI) в определенной точке:

β=R/r = U/l·dl/dU.

   Экспериментально коэффициент нелинейности можно оценить по формуле:

   β= lgI2-lgI1/lgU2-lgU1 = lgI2/I1/lgU2/U1.

   Чаще всего коэффициент нелинейности определяется при токе 1 мА и 10 мА, поэтому:

   β=1/lgU2/U1.

   Для варисторов на основе оксида цинка коэффициент нелинейности обычно составляет 20...60. Варисторы имеют достаточно большую емкость (100...50000 пф) в рабочем режиме (когда нет импульсов напряжения). При воздействии импульса их емкость падает практически до нуля.

   Одной из важнейших характеристик варистора является классификационное напряжение — Uкл — напряжение на варисторе при токе, равном 1 мА. Иногда приводится коэффициент защиты варистора — отношение напряжения на варисторе при токе 100 А к напряжению при токе 1 мА (то есть к классификационному напряжению). Он характеризует способность варистора ограничивать импульсы перенапряжения и для варисторов на основе оксида цинка находится в пределах 1,4...1,6. Таким образом, при росте напряжения в 1,4...1,6 раза ток через них возрастает в 100 000 раз.

   Важной характеристикой варистора является допустимая мощность рассеивания, определяемая его геометрическими размерами и конструкцией выводов. Для увеличения мощности рассеивания часто применяют массивные выводы, играющие роль радиатора.

   Диаграмма поясняющая работуПри возникновении высоковольтного импульса сопротивление варистора резко уменьшается до долей Ома и шунтирует нагрузку, защищая ее и рассеивая поглощенную энергию в виде тепла. При этом через варистор может протекать импульсный ток, достигающий нескольких тысяч ампер. Так как варистор практически безынерционен, то после исчезновения помехи его сопротивление вновь становится большим. Таким образом, включение варистора параллельно защищаемому устройству не влияет на работу последнего в нормальных условиях, но гасит импульсы опасного напряжения (рис. 4).






Рис. 4

   Выбор типа варистора осуществляется на основе анализа его работы в двух режимах: в рабочем и импульсном. Рабочий режим определяется классификационным напряжением Uкл, а импульсный — рассеиваемой мощностью. Для ориентировочных расчетов рекомендуется, чтобы рабочее постоянное напряжение на варисторе не превышало 0,85 Uкл, а при переменном токе действующее значение рабочего напряжения не превышало 0,6 Uкл.

   Форма грозового импульсаВ импульсном режиме через варистор протекает большой ток, вследствие чего необходимо опасаться выхода его из строя из-за перегрева. С этой целью необходимо использовать варисторы с рассеиваемой мощностью большей, чем расчетная.

   Для расчета варисторов, защищающих те или иные цепи от грозового разряда, иногда приводят сведения о напряжении на варисторе при воздействии стандартного грозового импульса. На рис. 5 показана форма этого импульса, который часто называют «импульсом 8/20 мкс».







Рис. 5

   Очевидно, что варисторы могут работать и при последовательном включении. При этом в них протекает одинаковый ток, а общее напряжение делится пропорционально сопротивлениям (в первом приближении - классификационным напряжениям), в той же пропорции разделится поглощаемая энергия. Сложнее обеспечить параллельную работу варисторов - необходимо строгое совпадение их ВАХ. Эта задача вполне разрешима при последовательно-параллельной схеме включения — т.е. варисторы последовательно собираются в столбы, а столбы соединяются параллельно. При этом подбором варисторов обеспечивают совпадение ВАХ столбов, которые собираются в блоки с нужными параметрами. Варисторы изготавливаются в обычном исполнении (дисковые, прямоугольные), в виде блоков различной формы и в виде чипов, что позволяет существенно экономить место на печатной плате (рис. 6).

   Отечественные предприятия выпускают варисторы для различных сфер применения, это серии СН, ВР, МЧВН/ВС, МОВН/ВС и другие.

   Из зарубежных производителей варисторов большую номенклатуру выпускает компания EPCOS. Ее приборы имеют следующую систему обозначений:

Чип и прямоугольные варисторы


SIOV- CN 1210 M 4 G

Варистор_________________________|
Тип варистора(CN,CU,SR)_______________|
Размер__________________________________|
Точность: K-10%, M-20%_______________________|
Классификационное напряжение__________________|
Тип упаковки_____________________________________|

Дисковые варисторы


SIOV S 14 K 250 G5 S6

Варистор________________________|
Тип варистора(S,B25 и др.)___________|
Диаметр варисторного диска_____________|
Точность: K-10%, M-20%__________________|
Классификационное напряжение______________|
Тип упаковки_________________________________|
Тип формовки выводов___________________________|

   Другие зарубежные компании-производители часто используют следующую систему обозначений выпускаемых варисторов:

DNR 0,5 D 181 M R S

Производитель________________________________________________|
Диаметр в мм, может быть 0,5;0,7;10;14;20______________________________|
Дисковый варистор____________________________________________________|
Классификационное напряж. (расшиф."18" и "0"= 180 В)_______________________|
Точность:J=5%, K-10%, M-20%________________________________________________|
Упаковка(R-катушка, В-россыпь)________________________________________________|
Выводы (S-прямые, К-формованные)______________________________________________|

Внешний вид варисторов

Рис. 6

Таблица 1

Типы варисторов
Параметры
ЧипДисковыеАвтомобильные
CNCUSSRCN-
AUTO
SU-
AUTO
S-
AUTO
SR-
AUTO
Импульсный ток (8/20 мкс), кА1,21012
Поглощаемая энергия, Дж234101225100
Средняя рассеиваемая мощность, Вт0,251,00,030,2
Время срабатывания, нс<0,5<10<25<0,5<10<25
Рабочая температура,
°С
-55..125-40..85-40..+85-55..125-40..85-55..125-40..85
Типоразмер0603..220
0
3225; 032SO5..S2O1210; 22200805..2220-S07..S201210; 1812; 2200

   В табл. 1, 2 приведены параметры оксидно-цинковых варисторов, выпускаемых компанией EPCOS.

Cетевой фильтр АРС PowerManager

Рис. 7

Таблица 2

Типы варисторов
Параметры
Для тяжелых условийБлокиКомбинированные
В25; ВЗО; 40; LS40В6ОВ80PD80Е32SHCV-SR1, SR2
Импульсный ток (8/20 мкс), кА4070100100651
Поглощаемая энергия, Дж1200300060006000-12
Средняя рассеиваемая мощность, Вт1,41,62,02,0-0,03
Время срабатывания, нс<25<25<25<25-<25
Рабочая температура °С-40...85-40...85-40...85-40...85-25...60-40...85

   В заключение следует отметить, что для эффективной защиты аппаратуры от воздействия различных сетевых помех необходимо использовать сетевые фильтры с многоступенчатой защитой. Например, в сетевом фильтре «АРС PowerManager» (рис. 7) массивные стержневые индукторы 1 обеспечивают фильтрацию электромагнитных помех, оксидно-цинковые варисторы 2 обеспечивают общий и нормальный режимы защиты от высоковольтных импульсов, а конденсаторы 3 фильтруют радиочастотные помехи и выравнивают слабые и средние колебания напряжения.

Мнения читателей
  • ууу/06.04.2012 - 11:32

    И еще не определен срок службы варисторов. Если тепловое расширение устанавливает контакт, то по идее тепловое расширение также разрушает поверхность контакта. Для первоначального локального прогрева по идее нужен разряд. А он в свою очередь получается за счет плазмы. Плазма получается из материалов электродов. Соответственно каждое срабатывание защиты постепенно уничтожает сам варистор. Нигде не смог найти подобную информацию. Передирают друг у друга одно и тоже.

  • чайник/10.03.2012 - 11:06

    я, прочитав эту статью, что - то не очень понял принцип и работу варистора, но мне очень понравилось, ведь это такая наука! я то сам - начинающий специалист в этом деле, но мне интересно всё, что с этим связано. завтра, короче, у препода спрошу про работу и эффективность. ну и прочее. а так спасибо! интересно! :-) :) 10.03.2012.15:05.

  • сеня/10.08.2011 - 07:11

    каким варистором можно защитить холодильник . предположительно перепад напряжения от 220 до 380 вольт. спасибо что потратили время

  • Василь/03.07.2011 - 17:33

    Спасибо за нужную инфу !

  • Анатолий/31.03.2011 - 06:37

    В магнето сгорел варистор 7D431KНа какое он напряжение?

  • Геша/10.02.2011 - 05:32

    Статья - что надо.

  • Вовка /26.11.2010 - 17:50

    Жаль про расшифровку других марок нету

  • 12val12/19.11.2010 - 20:16

    Очепятка"Классификационное напр(расшиф."18" и "0"= 180В)_______|" нужно "18" и "1" =180 В

  • Евгений/30.08.2010 - 07:14

    Спасибо!!! полезная информация, но мне не ясно, гашения импульса происходит до ном. U ???????

  • Владимир/26.08.2010 - 09:41

    Внатуре ребята спасибо,все клево написано,я сразу въехал в суть происходящего !!!